Human—Computer Interaction — INTERACT '87
H.-J. Bullinger and B. Shackel (Editors)
Elsevier Science Publishers B.V. (North-Holland)

© IFIP, 1987

PAC, an Object Oriented Model for Dialog Design

Joélle Coutaz
Laboratoire de Génie Informatique (University of Grenoble)
BP 68
38402 St-Martin-d'Heres Cedex, France
UUCP ...!mcvax!inrialimag!joelle

PAC is an implementation model that attempts to bridge the gap between the abstract sphere of
theoretical models and the practical affairs of building user interfaces. It takes as a basis the vertical
decomposition of human-computer interaction into semantic, syntactic and pragmatic layers as
promoted by some theoretical models. However, PAC stresses the fact that these notions do not form
strict monolithic layers but are distributed across related "chunks", called interactive objects. For
doing so, PAC recursively structures an interactive application in three parts: the Presentation, the
Abstraction and the Control. The Presentation defines the the concrete syntax of the application
whereas the Abstraction corresponds to the semantics. The Control maintains the mapping and the
consistency between the abstract entities and their presentation to the user. The Presentation of an
application is in turn decomposed into a set of interactive objects, entities specialized in man-machine
communication. As for applications, an interactive object is organized according to the PAC model.
PAC has been used for the construction of two interactive applications and is currently applied to the
development of a User Interface Management System.

431

1. Introduction

Models for the description of human-computer
interaction come essentially in three forms: ‘high level
theories, engineering models and implementation models.

High level theories such as GOMS [1] and CLG [2]
offer a way to understand the nature of human-computer
interaction and help organize the design process.
Engineering models such as the Keystroke Level Model {3)
and Phyllis Reisner's work [4] are useful in making
predictions about a particular design or evaluating
alternatives. Implementation models provide application
designers with a practical framework for building user
interfaces.

If one considers the implementer's point of view,
theoretical models are too abstract, engineering models
come too late and implementation models are too
functional. Theoretical models do not help much in the
practical needs of the implementer who is not necessarily a
knowledgeable person in the field of human-computer
interaction. Engineering models are useful for the
refinement of user interfaces not for their initial definition.
Finally, implementation models organize functional pieces
of software without integrating the "substantial marrow" of
theoretical models.

This paper presents PAC, an implementation model
that attempts to bridge the gap between the abstract sphere
of theoretical models and the practical affairs of building
"user-integrated" user interfaces. The next section
introduces the abstract model that served as a basis for
PAC. Section 3 and 4 describe PAC itself an show how
the model provides the foundation for supporting some of
the elements essential to the quality of a user interface:
context, concurrency and adaptability. Section 5 illustrates
the use of PAC for the construction of two interactive
applications and section 6 compares PAC to related work.

2. The Abstract Foundation of PAC

Abstract models all structure the human-computer
interaction into stages [5, 6, 7]. Unfortunately, the nature
of these levels varies in a subtle way depending on the
cognitivist or linguistic background of the model designer.
However, one can identify some commonalities between
these perspectives, in particular the notions of semantics,
syntax, lexeme and physics. The picture compiled by
Norwood Sisson in [8], integrates nicely the different
views by showing how each human cognitive stage has its
corresponding level in the user interface software.

PAC takes as a basis both the vertical decomposition
and the horizontal correspondance of Sisson's model.
However PAC stresses the fact that the notions of
semantics, syntax, and so on ... do not form strict
monolithic layers. Instead, each notion is distributed into
related "chunks", called objects, as is described in the
following section.

3. PAC, an Implementation model

PAC structures an interactive application in three parts:
Presentation, Abstraction and Control.

 the Presentation defines the concrete syntax of
the application, i.e. the input and output
behavior of the application as perceived by the
user;

+ the Abstraction part corresponds to the
semantics of the application. It implements the
functions that the application is able to perform.
These functions are supposed to result from a
thorough task analysis;

« the Control part maintains the mapping and the
consistency between the abstract entities

432 J. Coutaz

(involved in the interaction and implemented in
the Abstract part) and their presentation to the
user. It embodies the boundary between
semantics and syntax. It is intended to hold the
context of the overall interaction between the
user and the application.

This constitutes a first level of description of an
interactive application. We need now to refine the
Presentation part.

The Presentation of an application is a set of entities,
called interactive objects, specialized in man-machine
communication. As for applications, each interactive object
is organized according to the PAC model. Consider for
example the pie chart shown in figure 1:

1. the Presentation is comprised of:

« for output, a circular shape and a color for
each piece of the pie,

» for input, mouse actions that the user can
perform to interactively change the relative size
of the pieces;

2. the Abstraction is comprised of an integer value
within the range of two integer limits;

3. the Control maintains the consistency between
its Presentation and Abstraction. For example,
if the user modifies the size of one piece, the
Control part provokes the update of the integer
value. Conversely, if the application or another
interactive object modifies the value of the
integer, the size of the pieces is automatically
adjusted.

Abstraction Presentation

Control

Min=0
Max = 400
Value = 50

Figure 1: An elementary Interactive Object

Compound objects can be built from elementary
interactive objects and structured as PAC entities. The
Abstract part of a compound object reflects its semantics;
the Presentation is partly determined by the presentation of
the components and partly defined by specific attributes;
the Control serves for all-purpose local maintenance.
Consider, for example in the figure 2, the super-pie-chart
made of the elementary pie chart described above and of a
numeric string. If the control, say C, of the super-pie-chart
receives a message from control C1 of the elementary pie
chart and if this message notifies C of the modification of
the abstract value of the elementary pie chart, then the role
of C is to tell C2, the control of the numeric string, to
update its value. This is a very simple example of how
composition of objects can lead to arbitrarily sophisticated
objects.

By applying PAC recursively at every level of
abstraction of the user interface, everything in an
interactive application is a PAC object: from the elementary
interactive object to the whole application. As shown in the

upper rectangle of figure 3, the whole interactive
application is a PAC entity. The Abstraction part of the
application involves three domain dependent concepts in
the dialogue. The Controller at the top of the hierarchy
bridges the gap between the Abstraction and the
Presentation. The Presentation is made of 4 interactive
objects. The second lower rectangle shows the PAC
structure of the compound interactive object represented as
a black circle. This object is built from two elementary
PAC objects and one compound object which, in turn, is
composed of two elementary PAC objects.

Abstraction Control Presentation

Min=0

Max = 360

Yalue = 45

Value = 45}
Min=0

Max = 360

Yalue = 45

Figure 2: A Super-Pie-Chart is a compound object made of two
clementary objects: a pie chart as described in the figure 1 and a
string.

In addition, the user interface of a workstation
(generally refered to as a shell) may be modelled in a
straighforward manner by adding an extra PAC layer on
top of the application level. The Abstract part of that layer
may include such global data structures as the "clipping
board" or the "network status". The Presentation would
present these data structures and allow for the initial
invocation of applications. Finally, the Control part would,
of course, bridge the gap between the abstract and the
concrete sides. It would as well supervise the control parts
of all of the active applications. Such an arbitrator should
provide the basis for a uniform mechanism for transferring
data between applications.

This recursive object-oriented organization presents
some advantages which are described in the following
section.

4. The Interest of PAC

The interest of the PAC model is three-fold: a
consistent framework, the notions of control and
interactive object.

4.1. A Consistent Framework

PAC defines a framework for the construction of user
interfaces that is applicable in a consistent way at any level
of abstraction. As a result, semantics, syntax and
"pragmatics” are distributed across a hierarchy of entities
rather than forming hermetic layers that do not match the
cognitive organization of human knowledge [9].

4.2. The Notion of Control

PAC distinguishes functional notions from
presentation policies but introduces the notion of control to

PAC, an object oriented model for dialog design 433

Abstraction Control
g Top
@ Controller

Presentation

Abstraction

Presentation

/\

=L

AbstractionPresentation

=11

|

Figure 3: An interactive application structured according to the PAC Model.

bridge the gap between the two worlds. This link is
important: even minor syntactic details require knowledge
about the semantics. Therefore the role of the control part
is to maintain an extensive knowledge about the two
worlds it serves. As shown in figure 4, this knowledge can
include contextual information that may be useful for
history, help, error explanation, multi-thread dialogue and
automatic adaptation to the user.

Exp]anaﬁon
History Help

Customization 4&6 ontex t)———b Mg&;’[}i&d

Abstraction | Control

Presentation

Figure 4: Contextual information that a Control part may hold.

To illustrate the role of the notion of Control, let us
take two simple examples: a string object used as a field in
some form, and the top controller which links the
application to its user interface. The string controller may
keep track of the values that the user has successively
entered during the session. The user is then able to retrieve
the various values of the field by issuing the "next" or
"previous" commands (for example, by typing Ctrl-n or
Ctrl-p, if an Emacs-key-translation-table is attached to the
string) or even select the values through a pop up menu
attached to the string.

For reasons justified in [10], the Top Controller
should hold the main control loop of the dialogue but
hooks should be provided for mixed control. Mixed
control is required by applications when data are needed
from the user during the processing of a function (e.g. the
popular Unix "more" command). The problem is that the
control must not stay in the application hands because the

user should not be bound to directly satisty the request. He
should be able to invoke several functions of the
application before replying to the initial request. For doing
so, the Abstract application can issue READ messages
whereas the Top Controller maintains dialogue state
variables. On reception of a READ message, the Top
Controller creates a request object and activates the
interactive objects that represent the abstract entities
referenced in the READ message. The request object, a
dialogue state variable, watches the interaction between the
user and the interactive objects and detects when the user
has satisfied or cancelled the READ. When the READ
operation is completed, control automatically returns to the
function that issued the READ.

4.3. The Notion of Interactive Object

PAC takes full advantage of the object-oriented
paradigm with the notion of interactive object in particular
for customization, concurrency and distribution.

Interactive objects are customizable. Object-oriented
programming languages support data abstraction which
makes it possible to change underlying implementations
without changing the calling programs. In our case of
interest, this principle allows the internal modification of an
interactive object without changing its presentation and
abstract interfaces. Interestingly, it also allows the
modification of one interface without any side-effect on the
other one. For example, one can modify the presentation of
an interactive object (such as attaching a different key

translation table to an interactive object of type string)
without reflecting on its abstract behaviour. This property
makes it possible fine grained explicit adjustments of the
user interface without questioning the presentation of the
whole application. A second type of adjustment is the
automatic adaptation to the user. The object paradigm
seems suitable for the implementation of an intelligent
observer where each interactive object would model the
user with its own set of rules as made possible in
languages such as Loops [11].

434 J. Coutaz

Interactive objects are active concurrent entities. They
evolve, communicate and maintain relationships with each
other. Such activity, parallelism and communication are
automatically performed by the Object Machine, the generic
class of the interactive objects. The Object Machine defines
the general functioning that is made common to all of the
interactive objects by means of the inheritance mechanism.
In particular, each object owns a private finite state
automaton for maintaining its current dialogue state. On
receipt of a message, an object is thus able to determine
which actions to undertake according to its current state,

Interactive objects implement the dialogue in a
distributed way. This feature can serve as a basis for the
implemention of facilities related to notions that appear to
be everywhere such as every form of contextual
information. The examples presented in 4.2 illustrate the
kind of contextual information that can be held by
interactive objects. Distribution also provides the necessary
grounds for concurrent multiple I/O in the following way.
The set of automata (one automaton per interactive object)
defines the global state of the interaction between the user
and the application. The control of the interaction is
therefore distributed in an evolutive network of interactive
objects. Dialogue control is not handled by a unique
monolithic dialogue manager difficult to maintain, extend
and implement, in particular when one wants a pure
user-driven style of interaction. Conversely, since
interactive objects are able to maintain their own state, it is
easy to let the user switch between objects in any order.
Thus, an object-oriented approach provides for free the
maintenance of the user's arbitrary manipulations.

The notion of interactive objects and the modular
dichotomy between domain dependent concepts and
presentation policies have been successfully applied to the
development of two interactive applications. These are
briefly presented in the following section.

5. The Use of PAC

Our first experience with PAC is the implementation of
an application framework that provides application
programmers with a reusable and extensible skeleton [12].
This skeleton has been implemented in C on top of the
Macintosh toolbox and has been re-used for two
applications: a simple graphics editor and a graphics
terminal emulator. It is currently used for the
implementation of a tool for interactive dialogue
specification.

According to the PAC model, the reusable skeleton is
comprised of three parts:

1. the Abstract part which serves as the interface
to the domain dependent functions. This
interface is made of a predefined set of entry
points that the application programmer fills in
to access the semantic functions per se;

2. the Controller which contains the top level loop
and acts essentially as a mediator between the
underlying system, the Abstract, and the
Presentation parts. It receives low level events
generated by the system, dispatches them to the
Presentation and, for events that have semantic
side-effects, calls the appropriate entry point of
the Abstract side.

3. the Presentation part which is comprised of a
set of basic classes of objects, such as
window, menu and serial line classes. These
classes are enriched versions of the standard
Macintosh classes, providing the application
programmer with extended facilities such as
automatic refreshing and scrolling of windows
content. These objects process the low level
events transmitted by the Controller as far as
they can. If an object cannot fully process an
event (for example, a mouse click in a window
area that is not meaningful to the window
class), it generates an abstract event that the
Controller passes to the Abstract side for
further processing (for example, the mouse
event just mentioned generates an
"INCONTENT" abstract event that is directed
to the entry point "AbInContent" to which an
application dependent function is linked).

Given this architecture, switching from one application
to another requires implementing domain dependent
functions and connecting them to the predefined entry
points of the Abstract part. In our own experience,
switching from the "MiniMacDraw" program to the
emulator required adding a few new entry points. This
extension turned out to be easy to perform, due to the rigor
imposed by the underlying PAC model combined with the
object oriented paradigm.

Figure 5 shows the screen produced by a robot
simulator [13] running on a VAX and sending requests
through a serial line to the graphics terminal emulator
running on a Macintosh. The top left window is a classic
VT100 emulator with automatic vertical and horizontal
scrolling. The other windows show a graphical
representation of the robot's knowledge about its
environment. Here, the PAC skeleton handles the serial
driver for the graphics terminal emulator, takes care of the
syntactic tasks by automatically refreshing the windows
when they are resized, scrolled or moved around by the
end-user, signals invocation of semantic functions (such as
a baud rate change) and adheres, for the application, to the
standard Macintosh recommandations such as the access to
desk accessories and the "About” window. The next step
of this experience is to encapsulate the functionalities of the
terminal emulator into a new class of presentation object.

The application of the object-oriented paradigm to the
construction of user interfaces is rather new but not
specific to PAC. The following paragraph presents similar
works.

6. Related work

Other models than PAC rely on the notion of object
and make the distinction between functions and
presentation. These are the Smalltalk MVC model [14],
Ciccarelli's PPS model [15], EZWin [16] and GWUIMS
[17].

Model, View and Controller are three Smalltalk
classes. A Model implements some functions, a View is
the output rendering of a Model and a Controller is the
input driver of a Model. PAC and MVC differ in two
points:

PAC, an object oriented model for dialog design 435

« PAC distinguishes but encapsulates functions and
presentation into a single object. A local controller
encompasses the boundary between local semantics and
local syntax. At the opposite, MVC makes an explicit use
of three Smalltalk objects which must maintain their
consistency through message passing. In MVC, the notion
of control is diluted across three related objects whereas it
is explicitly centralized in PAC.

* PAC combines input and output behaviour into one
component whereas MVC distributes them across two
objects. The distribution has the advantage of flexibility
(one can change the input syntax without disturbing the
component dealing with the output syntax). Unfortunately,
it is often the case that, at the fine grained level of the
interaction, input events are strongly related to immediate
output feedbacks.

€ File tdit Connection Baud Port Configuration

part can maintain a context (e.g. current status, validity,
defaults) that can be usefully exploited during interaction to
provide the end user with dynamically tuned informative
feedback.

GWUIMS revolves around five types of objects:
A-objects embody the semantics of the application;
1-Objects bridge the gap between A-Objects and R-objects.
R-objects control the presentation. They are at the
boundary between the lexical and syntactic levels of a
UIMS. Lexical input is carried out by T-objects whereas
lexical output is performed by G-objects. An elementary
PAC object is functionally equivalent to the combination of
a R-Object with a T-Object and a G-Object, and the
MOUSE Controller is functionally equivalent to
I-Objects.Clearly, PAC and GWUIMS are closely related
in their overall organization although GWUIMS splits the
presentation into input and output objetcs.

8:49:15

UT100 Window

Global Model and Network

8. Position Tnitiale du Robot
10.Traces

5

Option choisie : O to 11> [1
NAVIGATION: chargement du Reseau
Nom du fichier ? [lifia.netl
NAVIGAT ION: *%¥ debut chargement
NAUVIGATION: *** fin chargement rg

i 3 —
-

a

Sensor Model

iiiiii

Real World and Robot

Figure 5: A View of the Robot Simulator whose architecture is based on PAC.

PPS is organized around a network of Presenters and
Recognizers that manipulate two types of data bases. An
Application data base defines some functions and a
Presentation data base presents the Application data base.
A Presenter builds a Presentation data base from an
Application data base. The user modifies a Presentation
data base, the associated Recognizer interprets the user's
actions and modifies the corresponding Application data
base. As in MVC, PPS makes a dichotomy between input
and output behaviour but, at the opposite of MVC, these
behaviours are not carried out by objects. PPS objects are
passive entities manipulated by Presenters and
Recognizers.

EZWin objects are close to PAC interactive objects:
both combine input and output policies. The originality of
PAC objects is the existence of the Control part which lays
the ground for the implementation of distributed notions
related to the notion of control. In particular, the Control

7. Conclusion

PAC is currently applied to the development of a User
Interface Management System [12] implemented in C on
the Macintosh. It is an attempt to integrate in a natural way,
concepts provided by abstract models such as the notions
of semantics, syntax and pragmatics, and practical
guidelines derived from experiments such as "let the user
drive and customize freely the dialogue". Now, the next
step in the refinement of PAC is to provide the implementer
with more details about the nature and the arrangement of
the contextual information hold in the hierarchy of
controllers; in particular identify which contextual
information are common to all systems and which ones are
domain specific.

436 J. Coutaz

Acknowlegment. This work is part of the project
GUIDE, an object oriented distributed system, which is
being designed at the Laboratoire de Génie Informatique
(IMAG, University of Grenoble). It sets the foundation of
the user interface for the GUIDE workstations.

References

[11 S. Card, T. Moran, A. Newell: The Psychology of
Human-Computer Interaction; ISBN 0-89859-243-7,
Lawrence Erlbaum Associates, Publish., 1983.

[2] T. Moran: The Command Language Grammar: a
representation for the user interface of interactive
computer systems; International Journal of
Man-Machine Studies, 15, 1981, 3-50.

[3] S.K. Card, T.P. Moran, A. Newell: The
Keystroke-Level Model for User Performance Time
with Interactive Systems; Communications of the
ACM, 23(7), July 1980, 396-410.

[4] P. Reisner: Further developments toward using
formal grammar as a design tool; Proceedings of
Human Factors in Computer Systems, Gaithersburg,
Maryland, March, 1982, 304-321.

[5] J. Foley, A. Van Dam: Fundamentals of Interactive
Computer Graphics, Addison-Wesley Publishing
Co., Reading, MA, 1982,

[6] D. Norman: Stages and Levels in Human-Machine
Interaction; International of Man-Machine Studies,
21, 1984, 365-375.

[71 B. Schneiderman: Designing User Interface:
Strategies for Effective Human-Computer Interaction;

Addison-Wesley Publishing Co., Reading, MA,
1987.

[8] N. Sisson: Dialogue Management Reference Model;
ACM SIGCHI bulletin, 18(2), October, 1986, 34-35.

[91 J.R. Anderson: The Architecture of Cognition,
Harvard University Press, 1983.

[10] J. Coutaz: The Construction of User Interfaces and
the Object Paradigm; to appear in the proceedings of
the European Conference On Object Programming
(ECOOP'87), Paris, june, 1987.

[11] D.G. Bobrow, M. Stefik: The Loops Manual; Tech.
report KB-VLSI-81-13, Knowledge Systems Area,
Xerox, Palo Alto Research Center, 1981.

[12] J. Coutaz : La Construction d'Interfaces
Homme-Machine, Rapport de Recherche IMAG-LGI,
RR 635-1, novembre 1986.

[13] J. Crowley, Navigation for an Intelligent Mobile
Robot, IEEE Journal of Robotics and Automation,
Vol 1(1), March 1985, 31-41.

[14] A. Goldberg, D. Robson: Smalltalk-80: The
Interactive Programming Environment;
Addison-Wesley Publ., 1984.

[15] E.C. Ciccarelli: Presentation Based User Interfaces,
Technical Report 794, Artificial Intelligence
Laboratory, Massachusetts Intelligence Laboratory,
August, 1984,

[16] H. Lieberman: There's More to Menu Systems than
Meets the Screen; SIGGRAPH'SS, 19(3), 181-189.

[17] J.L. Sibert, W.D. Hurley, T.W. Bleser; An Object
Oriented User Interface Management System;
SIGGRAPH'86, 20(4), 1986, 259-268.

